Softening of the radial breathing mode in metallic carbon nanotubes.
نویسندگان
چکیده
The softening of the radial breathing mode (RBM) of metallic single walled carbon nanotubes (m-SWNTs) due to electron-phonon coupling has been studied by observing the Fermi level [see text] dependence of the RBM Raman peak. In situ Raman spectra were obtained from several individual m-SWNTs while varying [see text] electrochemically. The RBM frequency of an intrinsic m-SWNT is shown to be down-shifted relative to highly doped tubes by approximately 2 cm(1). The down-shift is greatest for small diameter and small chiral angle SWNTs. Most tubes show no change in RBM linewidth. A comparison is drawn between the RBM and the G band (A(LO) phonon) with respect to the [see text] dependence of their frequencies and linewidths.
منابع مشابه
Radial Breathing Mode Frequency of Multi-Walled Carbon Nanotube Via Multiple-Elastic Thin Shell Theory
In this paper, the radial breathing mode (RBM) frequencies of multi-walled carbon nanotubes (MWCNTs) are obtained based on the multiple-elastic thin shell model. For this purpose, MWCNT is considered as a multiple concentric elastic thin cylindrical shells, which are coupled through van der Waals (vdW) forces between two adjacent tubes. Lennard-Jones potential is used to calculate the vdW ...
متن کاملAssignment of (n,m) Raman and Absorption Spectral Features of Metallic Single-Walled Carbon Nanotubes
The (n,m) spectral features for isolated metallic single walled carbon nanotubes were deduced by examining Raman excitation profiles. Correlation of the radial breathing mode frequency with diameter identifies the (n,m) index of the metallic tube. Observation of the energy of Raman intensity maximum provides experimental values for the optical transitions directly, and allows for model independ...
متن کاملValidation of Shell Theory for Modeling the Radial Breathing Mode of a Single-Walled Carbon Nanotube (RESEARCH NOTE)
In this paper, the radial breathing mode (RBM) frequency of single-walled carbon nanotube (SWCNT) is studied based on the thin shell theory. For this purpose, SWCNT is considered as an elastic thin cylindrical shell. The dynamic equation of RBM is derived using the Hamilton’s principle. An analytical solution of the RBM frequency of SWCNT is obtained. The advantage of this formulation is that i...
متن کاملRaman Scattering in Carbon Nanotubes
The vibrational properties of single-walled carbon nanotubes reflect the electron and phonon confinement as well as the cylindrical geometry of the tubes. Raman scattering is one of the prime techniques for studying the fundamental properties of carbon tubes and nanotube characterization. The most important phonon for sample characterization is the radial-breathing mode, an in-phase radial move...
متن کاملRaman spectra of lithium doped single-walled 0.4 nm carbon nanotubes
Using the vapor phase adsorption method, we show that it is possible to intercalate lithium atoms into 0.4-nm diameter single-walled carbon nanotubes. The charge-transfer behavior is studied by resonant Raman spectra. With increasing doping concentration, the radial breathing mode of these tubes shifts to higher frequency by about 18 cm because the vibration perpendicular to the tube axis is de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 102 12 شماره
صفحات -
تاریخ انتشار 2009